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 1. INTRODUCTION                           
     Design of open-ended thick cylinder is based on the 

autofrettage analysis for full use of the capacity of the 

material. Prediction of the residual hoop stress 

distribution in autofrettaged thick-walled tubing of high 

strength low-alloy steel with a diameter ratio is 

presented in [1]. Plastic stress and strain distribution 

induced by a single over-pressure cycle in a cylindrical 

vessel considering a linear hardening law and Ramberg-

Osgood law for an ideal elastic-perfectly plastic-

material are presented and residual stress fields are 

numerically evaluated, during unloading phase, for 

stress and strain in [2]. Optimum radius of elastic-

plastic juncture, influence of autofrettage on stress 

distribution and load-bearing capacity of a cylinder is 

studied and optimum pressure in autofrettage 

technology is presented in [3]. A numerical procedure 

for modeling autofrettage of thick-walled cylinders with 

Bauchinger effect as a function of prior plastic strain 

and von Mises criterion is presented in [4]. Auxiliary 

variable method for infinite plate with circular hole is 

furnished in [5] as well as for thick-walled cylinder 

made of strain-hardening material for stress-strain is 

furnished in [6].  

     Scope is to find out the elastic-plastic stresses and 

strains from the general analytical solution of a strain-

hardened open-ended thick cylinder by auxiliary angle 

method using small deformation theory and von Mises 

criterion. It is a new analytical method for the elastic- 

 

 

plastic stress and strain analysis and the strength design 

by plastic-limit. Setting the strain-hardening index of 

the material equal to zero, the solution and the results 

are reduced to those of open-ended thick cylinder of 

elastic-perfectly plastic-material [6, 7]. A numerical 

solution is also presented to study the effect of the 

elastic-limit pressure and the plastic-limit (full-yield) 

pressure for an open-ended thick cylinder of elastic-

perfectly plastic-material and the strain-hardened 

materials, for the different radius ratios of the cylinder 

on the limiting load-carrying capacity of an open-ended 

thick cylinder. 

 

2.  ANALYSIS OF THE CYLINDER 

                                                      

 
Fig 1. An open-ended thick cylinder                                              

     An open-ended thick cylinder of strain-hardened, 
homogeneous and incompressible material, as shown in 

STRESS-STRAIN ANALYSIS OF AN OPEN-ENDED THICK 

CYLINDER OF STRAIN-HARDENED MATERIAL BY  

AUXILIARY ANGLE METHOD                                   

                                        

N Sultana, P Nayak and S C Mondal 

 

Dept of Mechanical Engineering, Faculty of Engineering and Technology, 

Jadavpur University, Kolkata, India
 

 

 

ABSTRACT 

This work aims at the determination of the stresses and strains from the analytical solution of an open-

ended thick cylinder of strain-hardened material by auxiliary angle method by using small deformation 

theory and von Mises criterion. This solution submits a new analytical method for the elastic-plastic 

stresses, strains and displacements. Study of the strength design by plastic-limit pressure and 

corresponding displacement for various radius ratios of the cylinder are presented.  

 

Keywords: Strain-hardened Material, Auxiliary Angle, Von Mises Criterion 



© ICME2011                                                                                       2                                                                                           AM-023 
 

figure1, of inside radius, a, and outside radius, b, 

subjected to small strain and internal pressure, pi 

symmetrically with a cylindrical interface of radius, c (a 

   b) concentric with the inside and outside 

surfaces of the cylinder, inside of which the material has 

yielded and outside of which still in the elastic state. 

The elastic-plastic analysis of the thick cylinder can be 

performed on the basis of the small deformation theory 

and von Mises yield criterion with the stress-strain 

relation of the elastic-power law plastic-material model 

and by separating the cylinder into the elastic region (c 

≤ r ≤ b) and the plastic region (a ≤ r ≤ c) and solving 

them. 

 

2.1 Stress, strain, and displacement in the 

elastic region (c ≤ r ≤ b) 

     Let pressure acting on the elastic-plastic interface be 

pj ,then for the open-ended thick cylinder of inside 

radius c and outside radius b, subjected to internal 

pressure pj, Lame’s equation results the stresses:  

     
( ){ }( )22222

jθ rb1cbcpσ +=                  (1) 

      ( ){ }( )22222
jr rb1cbcpσ =                  (2) 

                               

Strains: for incompressible material, Poisson’s ratio 

 ν = 0.5 and E = Young’s modulus;                    

      

( ){ }( )22222
j rb31cbE2cp +=             (3) 

      
( ){ }( )22222

jr rb31cbE2cp=
         

(4) 

     
( ){ }222

jz cbEcp=                                 (5) 

Displacement:                       

( ){ } ( )22222
j rb31rcbE2cpru +==                          (6) 

    Eq. (1) through (6) are the solutions of the elastic 

region (c ≤ r ≤ b) of the cylinder. If c and pj are 

determined from the boundary conditions, the stresses, 

strains, and displacement of any position in this region 

may easily be calculated. 

 

2.2 Stress, strain, and displacement in the 

plastic region (a ≤ r ≤ c) 

     According to assumption, the stress-strain relation of 

a strain-hardened material is defined in [8]:  

y≤;E=                                                        (7) 

y
n ;A                                                     (8) 

Where σ, ε are the equivalent stress and strain; σy, εy are 

the material yield strength and strain, respectively, with 

εy = σy / E and A is the strength coefficient of material, 

(= σy
 /εy

 
n
) and n is the strain-hardening index of 

material, 0 ≤ n ≤ 1. Eq. (7) and (8), define an elastic-

power law plastic-model to represent the stress-strain 

relation of a strain-hardened material, with the basic 

equations abiding the small deformation theory and von 

Mises yield criterion for determining the solution in the 

strain-hardened open-ended thick cylinder will be as 

follows: 

The equilibrium equation:   

( ) 0drdr rr =+                                      (9) 

The constitutive equations:    

nA                                                                   (10) 

( )( )2r=                                        (11)
 

        
( )( )2rr =                                        (12)

                           
where  is determined from equation, (as σz = 0)

 
2
rr

2                                                (13)

  
and the compatibility equation:                                                           

( ) 0drdr r =+                                               (14) 

with the boundary conditions:                                                           

iarr p=
=                                                             

(15) 

jcrr p
                                                               

(16) 

ycr
=

=
                                                                

(17) 

Eq. (9) through (17) consists of the boundary-value 

problem. As the stresses are unknowns, the problem 

may be solved as follows: Introducing an auxiliary 

variable angle ø = ø(r) and considering the  new stress 

functions as: 

( ) ( )6cos32 +=                                         (18)

 ( ) sin32r =                                                  

(19)

           where the Eq. (13) is satisfied by Eq. (18) and (19). 

Substituting Eq. (18) and (19) into Eq. (11) and (12), it 

is found that 

cos                                                             (20) 

( )3cosr =                                                    

(21)

 Substituting Eq. (9), (10), (18), (19), (20) and (21) in 

Eq. (14), the resulting equation becomes:                         

 

( )
d

sin3ncos

cos3sind +
=                                      (22)

               
     

Integrating it from c to r, would result: 

( )
( )

( )
( )

++

+

=
c2

2

2

1n3

n1n3

1n3

nn3

n

cn
y e

sin

sin
                      

(23)                  

where ( )yj
1

c 2p3sin=                             (24) 

 and 1n31sin 21
n

        

                           (25) 
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Eq. (23) is the expression of equivalent stress σ  in terms 

of auxiliary variable angle ø. From this equation the 

functional relationship between ø and r can be found 

consequently. Substituting Eq. (18), (19) and (23) into 

Eq. (9) would result: 

                                  

cos3sin

dcos2

cossinn3

dsinn2

r

dr

+
=

 

          (26)                  

 
Integrating this Eq. (26) from a to r would result:   

                        

( )
( )

( )
++

=
a2

2

2
1n3

1n

2

3

1n3

n2

na

n
a

e
sin

sin

6
cos

6
cos

ar            

(27)

  
As the value of auxiliary variable ø at r = a, is the root 

of the following equation, resulting from, substituting 

Eq. (19) and (23) into Eq. (15);                                                                                                                                                                                                 

( )
( )

( )
( )

a
1n3

n1n3

1n3

nn3

an

cn

y

i
sine

sin

sin

3

2p ca2
2

2

++

+

=

        
(28) 

 

Eq. (28) gives the relationship between øa and øc. 

To determine øa and øc separately, another equation 

consisting of øa and øc is required, which is found by 

using the boundary conditions at the elastic-plastic 

interface r = c are:
  

 

( ) ( ){ }2222
jcr cbcbp +==                       (29)

jcrr p                                                     (30) 

Substituting Eq. (29), (30) and (13) in Eq. (17), 
                                                       

( ) 4422
yj cb3cbp +=                                     

(31) 

Inserting Eq. (19) into Eq. (16), results:

                                                           

( )( ) += 44221
c cb3cb23sin                  

(32)

 where c is determined from Eq. (27) as: 

( )
( )

( )
++

=
ac2

2

2
1n3

1n

2

3

1n3

n2

na

nc

c

a

e
sin

sin

6
cos

6
cos

ac
            

(33) 

 Substituting Eq. (33) into Eq. (32), the second 

functional relationship between øa and øc is obtained.  

Eq. (28), (32) and (33) can be solved by using iterative 

procedures. 
On determination of øa , the functional relationship 

between r and ø will solely be determined from Eq.(28). 

Using this Eq.(28) with Eq. (18) and (19), the stresses σr 

and σθ at any position (r,θ) in the plastic region (a

) will be readily obtained.
  

                                                                                                  

 Again, by using the expression of the plastic stress 

components, the expressions of strains in the plastic 

region (a ) can be determined as follows: from 

Eq. (20) and (21);
 

( ) ( )22 rrr =                       (34) 

and substituting Eq. (18) and (19) into this Eq. (34), it 

results:                                                                      

( ){ }cos3cosr =                                      

(35) 

and substituting this Eq. (35) into the compatibility Eq. 

(14), result obtained is:      

 ( ){ }
r

dr
cos6cos3

d
=                           (36) 

Substituting Eq. (26) into Eq. (36) and integrating the 

resulting from øc to ø, the expression of strains will 

finally be found: 

                                  

( )
( )

( )
( )

++

+

=
c2

2

1n3

n13

c

1n3

1n3

n

ncj
e

cos

cos

sin

sin
(37)                                             

( ){ }cos3cosr =                                      

(38) 

 ( )+= rz                                                         (39) 

where ( ) ( ){ }4422
y

j
cb3cb3E2 ++=                 (40) 

and according to the value of c obtained from Eq. 

(32).The displacement in the plastic region is obtained 

as: 

( )
( )

( )
( )

++

+

==
c2

2

1n3

n13

c

1n3

1n3

n

ncj
e

cos

cos

sin

sin
rru               

(41)                                                              
Eq. (18), (19), (37) through (41) represent the general 

solution in the plastic region of the open-ended thick 

cylinder. Once pj and c are determined from Eq. (31) 

and (33), respectively, the stress, strain, and 

displacement at any position(r, θ) is the plastic range (a 

≤ r ≤ c) will readily be obtained by using these 

equations. Similarly, by substituting the values of pj and 

c into Eq.(1) through (6), the results for the stress, 

strain, and displacement at any point (r, θ ) in the elastic 
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region (c ≤ r ≤ b) of the open-ended thick cylinder can 

also be obtained. 
 

 

3. VALIDATION    

            

3.1 Compatibility with solution for stresses of 

an elastic-perfectly plastic-material open-ended 

thick cylinder 

When n=0, Eq. (8) becomes an elastic-perfectly plastic 

stress-strain relation of material, and Eq. (23) results: 

y
                                                                     (42) 

        and Eq.(27) results: 

( ) ( ) ( )( )[ ]23
a

ae6cos6cosar=
         

(43)
 

 where 
( )yi

1
a 2p3sin=                                 (44)   

 With Eq. (42) through (44) and Eq. (18), (19), the 

stresses in the plastic region (a ≤ r ≤ c) for an elastic-

perfectly plastic-open-ended thick cylinder will be:
                                                            

( ) ( )6cos32 y +=                                       

(45) 

and  ( ) s i n32 yr =                                         

(46) 

and the stresses in the elastic region (c ≤ r ≤ b)  of this 

subject, with Eq. (1), (2) and (31), will be: 

( )22442
y rb1cb3c ++=                        (47) 

and ( )22442
yr rb1cb3c +=           (48) 

where c is obtained from Eq.(43) with Eq.(32): 

( ) ( ) ( )( )[ ]ca23
ca e6cos6cosac=

               
(49) 

where ( ) ( ){ }22221
c cb3cb3tan +=            (50)

 

The numerical results of expression in Eq. (43), (45) 

through (49) for stresses are exactly same as those in 

[6]. So the general solution in this paper is compatible 

with that in [6].        
 

3.2 Compatibility with solution for strains of an 

elastic-perfectly plastic-material open-ended 

thick cylinder                         

     Substituting n = 0, in Eq. (25) and from Eq. (37), 

(38) and (39), the strains in the plastic region for an 

open-ended thick cylinder of elastic-perfectly plastic 

material will be:
                                                           

( )( ){ } ( )[ ]c34422
y ecb3cb3E2 ++=                      (51) 

( ){ }cos3cosr =                                      

(52) 

( )+= rz                                                       (53)
 

where c and øc are defined in Eq. (49) and (50). The 

numerical results of these expressions are exactly same 

with those in [6]. This fact reveals that the general 

solution in this paper is compatible with that in [6].
 

 

 

 

 

3.3 The elastic-limit pressure, py
 

When c = a i.e. the inner surface of the cylinder starts 

yielding, at an internal pressure which is called the 

elastic limit pressure, py.
 

 For c = a, øc = øa and from Eq. (31) one get: 

   ( ) 1K31Kp 42
yy +=                                 (54) 

where K, the radius ratio = b/a and  Eq. (54) is the 

elastic-limit pressure formula of the cylinder from  the 

general solution and is identical with the solution of 

Lame based on Von Mises yield criterion at  r = a [7].  
 

 

 

3.4 The plastic-limit (full-yield) pressure, pu  

When c = b i.e. the outer surface of the cylinder has 

yielded, at an internal pressure which is called the 

plastic limit or full-yield pressure, pu.  

Substituting c = b into Eq. (28), it would result:  

( )

( )

a
1n3

n1n3

1n3

nn3

an

n
yu sine

sin

sin

3

2
p

a2
2

2

++

+

=             (55) 

where øa is the root of the following Eq.(56): 

( )
++

=
a2

2

2
1n3

n1
3

1n3

n4

na

n
a

2 e
sin

sin

6
cosK

2

3

      

(56)                       

Eq. (55) is the formula for the plastic-limit pressure 

given by the general solution of this subject. When  

n = 0 i.e. for an open-ended cylinder of elastic-perfectly 

plastic-material, Eq.(55) reduces to: 

( ) ay0nu sin32p =
=

                                         (57)                                

where øa is the root of the following Eq.(58): 

( ) ( ) ( )a3
a

2 e6cosK23 =                               (58) 

where K, the radius ratio = b/a. Eq. (57) is the plastic-

limit or full-yield-pressure formula for an open-ended 

thick cylinder of elastic-perfectly plastic-material and 

the numerical results are exactly same as those in [6]. 
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Fig 2. Distribution of pi / σy for different values

  

                   
of c /a and n for b/a =1.5

     

 

 
           Fig 3. Distribution of pi / σy for different values 

                            of c /a and n for b/a =2.0 

     
 

Fig 4. Distribution of u/a for r /a for b/a =1.5 

(some specific cases) 

 

     

Fig 5. Distribution of u/a for r /a for b/a =2.0 

(some specific cases) 

 

4. CONCLUSIONS 

     Eq. (57), a specific case, reflects the influences of σy 

and K, while, in addition to these, Eq. (55) has effect of 

n (strain-hardening index), on the limiting load-carrying 

capacity. The comparisons are shown in fig.2 and 3 for 

radius ratios, b/a = 1.5 and 2.0, respectively, by solving 

Eq. (28) and results follow: 

     (1) The strain-hardening effect (n) has a significant 

role on the limiting load-carrying capacity. From fig.2 

and 3, for radius ratios, b/a = 1.5 and 2.0, respectively, 

the load-carrying capacity(pu/σy) of an open-ended thick 

cylinder of the elastic-perfectly plastic-material (n = 0) 

can be used for an  cylinder of a strain-hardened 

material with a smaller n (say n = 1/9), while for a 

strain-hardened open-ended thick cylinder with a larger 

n (say = 8/9, 2/3,..), the strain-hardening effect(n) will 

be considered to yield a reasonable strength design 

based on the plastic-limit pressure. 

     (2) The elastic-limit load-carrying capacity (py) is 

much smaller than that of the plastic-limit (pu), even for 

an open-ended thick cylinder of elastic-perfectly plastic-

material (n = 0), and as well as for a strain-hardened 

open-ended thick cylinder with a larger n, for the radius 

ratios b/a = 1.5 and 2, respectively. Hence, the design 

based on the elastic-limit analysis underestimates the 

load-carrying capacity of   the strain-hardened open-

ended thick cylinder, which results in loss of material. 

     (3) The load-carrying capacities (pi/σy) of the open-

ended thick cylinders of different strain-hardening 

effects (n) are reasonably different under the same 

overstrain [say, 50% (c/a = 1.25 for b/a = 1.5 and 

c/a = 1.5 for b/a = 2)]. The larger the n is, the larger the 

load- carrying capacity (pi/σy) is.  

     (4) The distributions of radial displacement (u) are 

shown in fig.4 and 5, for b/a = 1.5 and 2.0, respectively 

assuming a strain-hardened material of σy = 1070 MPa 

and E = 207000 MPa and based on py = 332.45 MPa, pi 

= 440.2MPa for n = 0 and 467.8 MPa for n = 1/2 at c/a 

= 1.25, and pu = 470.16 MPa for n = 0 and 559.72 MPa 

for n = 1/2, for b/a = 1.5; similarly py = 458.57 MPa, pi 

= 751.36MPa for n = 0 and 865.1 MPa for n = 1/2 at c/a 

= 1.5, and pu = 823.66 MPa for n = 0 and 1070.64 MPa 

for n = 1/2,for b/a = 2.0. Radial displacement u 

increases as strain-hardening index n decreases and 

gradually decreases from inside surface to outside 

surface of the cylinder. 
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6. NOMENCLATURE 
 

Symbol Meaning Unit 

A 

a 

 b 

c 

E 

e 

K 

n 

ji pp ,

uy pp ,
 

 

 

r 

u 

x, y 

θ 

 

y,

y,  

zr ,,
 

 

zr ,,
 

j

 
 

 

a , c  

n  

Strength coefficient 

Inside radius 

 Outside radius 

Elastic-plastic juncture 

radius 

Young’s modulus 

Exponential term 

Radius ratio (= b/a) 

Strain-hardening index 

Internal pressure, Elastic-

plastic juncture pressure 

Elastic-limit pressure, 

Plastic-limit (full yield) 

pressure 

Variable radius 

Radial displacement 

Cartesian co-ordinate 

Tangential co-ordinate 

Equivalent, Yield stress 

 

Equivalent, Yield strain 

Tangential, radial, axial 

stress 

Tangential, radial, axial 

strain 

Tangential elastic-plastic 

juncture  strain 

Auxiliary angle [ (r)] 

Auxiliary angle, at r = a, r 

= c 

Angle of strain-hardening 

index [ (n)] 

--- 

m 

m 

m 

MPa 

--- 

--- 

--- 

MPa 

 

MPa 

 

 

m 

m 

m 

rad 

 

MPa 

 

--- 

 

MPa 

 

--- 

 

--- 

 

rad 

 

rad 

 

rad 
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