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ABSTRACT

This work aims at the determination of the stresses and strains from the analytical solution of an open-
ended thick cylinder of strain-hardened material by auxiliary angle method by using small deformation
theory and von Mises criterion. This solution submits a new analytical method for the elastic-plastic
stresses, strains and displacements. Study of the strength design by plastic-limit pressure and
corresponding displacement for various radius ratios of the cylinder are presented.
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1. INTRODUCTION

Design of open-ended thick cylinder is based on the
autofrettage analysis for full use of the capacity of the
material. Prediction of the residual hoop stress
distribution in autofrettaged thick-walled tubing of high
strength low-alloy steel with a diameter ratio is
presented in [1]. Plastic stress and strain distribution
induced by a single over-pressure cycle in a cylindrical
vessel considering a linear hardening law and Ramberg-
Osgood law for an ideal elastic-perfectly plastic-
material are presented and residual stress fields are
numerically evaluated, during unloading phase, for
stress and strain in [2]. Optimum radius of elastic-
plastic juncture, influence of autofrettage on stress
distribution and load-bearing capacity of a cylinder is
studied and optimum pressure in autofrettage
technology is presented in [3]. A numerical procedure
for modeling autofrettage of thick-walled cylinders with
Bauchinger effect as a function of prior plastic strain
and von Mises criterion is presented in [4]. Auxiliary
variable method for infinite plate with circular hole is
furnished in [5] as well as for thick-walled cylinder
made of strain-hardening material for stress-strain is
furnished in [6].

Scope is to find out the elastic-plastic stresses and
strains from the general analytical solution of a strain-
hardened open-ended thick cylinder by auxiliary angle
method using small deformation theory and von Mises
criterion. It is a new analytical method for the elastic-
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plastic stress and strain analysis and the strength design
by plastic-limit. Setting the strain-hardening index of
the material equal to zero, the solution and the results
are reduced to those of open-ended thick cylinder of
elastic-perfectly plastic-material [6, 7]. A numerical
solution is also presented to study the effect of the
elastic-limit pressure and the plastic-limit (full-yield)
pressure for an open-ended thick cylinder of elastic-
perfectly plastic-material and the strain-hardened
materials, for the different radius ratios of the cylinder
on the limiting load-carrying capacity of an open-ended
thick cylinder.

2. ANALYSIS OF THE CYLINDER

Fig 1. An open-ended thick cylinder
An open-ended thick cylinder of strain-hardened,
homogeneous and incompressible material, as shown in
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figurel, of inside radius, a, and outside radius, b,
subjected to small strain and internal pressure, p;
symmetrically with a cylindrical interface of radius, ¢ (a
< ¢ < b) concentric with the inside and outside
surfaces of the cylinder, inside of which the material has
yielded and outside of which still in the elastic state.
The elastic-plastic analysis of the thick cylinder can be
performed on the basis of the small deformation theory
and von Mises yield criterion with the stress-strain
relation of the elastic-power law plastic-material model
and by separating the cylinder into the elastic region (c
<r < b) and the plastic region (a < r < c¢) and solving
them.

2.1 Stress, strain, and displacement in the
elastic region (csr<b)

Let pressure acting on the elastic-plastic interface be
p; ,then for the open-ended thick cylinder of inside
radius ¢ and outside radius b, subjected to internal
pressure p;, Lame’s equation results the stresses:

oo ={p;0? /b2 c?)fu+p?/r?) &)
o ={pc?/b? < )ft b?/r?) @

Strains: for incompressible material, Poisson’s ratio
v =0.5 and E = Young’s modulus;

ey =12 /26> & fr+307/r?) ®)

e ={p,c?/2Eb? )L ?/r2) (@

e,= Ppc?/ER? ) 5)
Displacement:

U=gyl = {pjcz/ZE(b2 ¢?)j+302/r2) (6)

Eq. (1) through (6) are the solutions of the elastic
region (c < r < b) of the cylinder. If ¢ and p; are
determined from the boundary conditions, the stresses,
strains, and displacement of any position in this region
may easily be calculated.

2.2 Stress, strain, and displacement in the
plastic region (a<r<c)
According to assumption, the stress-strain relation of
a strain-hardened material is defined in [8]:
c=Ego=o, @)

c=Ae";6>0, (8)
Where o, ¢ are the equivalent stress and strain; oy, & are

the material yield strength and strain, respectively, with
&, = o,/ E and A is the strength coefficient of material,

(= oy /Sy ™ and n is the strain-hardening index of
material, 0 < n < 1. Eq. (7) and (8), define an elastic-
power law plastic-model to represent the stress-strain
relation of a strain-hardened material, with the basic
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equations abiding the small deformation theory and von
Mises yield criterion for determining the solution in the
strain-hardened open-ended thick cylinder will be as
follows:

The equilibrium equation:

r(do, /dr)+o, o©4=0 9)
The constitutive equations:
o= Ag" (10)
€9 = (8/0)(09 Gr/z) (11)
g = (s/cs)(csr 09/2) (12)

where o is determined from equation, (as o, = 0)

6 =463 —640, +G? (13)

and the compatibility equation:

r(deg/dr)+€, € =0 (14)
with the boundary conditions:

ol = p (15)
Gr|r=c =-P; (16)
Gl r=c — Oy

17)

Eg. (9) through (17) consists of the boundary-value
problem. As the stresses are unknowns, the problem
may be solved as follows: Introducing an auxiliary
variable angle ¢ = g(r) and considering the new stress
functions as:

o0 = (2/V3 ) cos(p+ /6) (18)
o, = (2/\3)sin¢
(19)

where the Eq. (13) is satisfied by Eq. (18) and (19).
Substituting Eq. (18) and (19) into Eq. (11) and (12), it
is found that

g, =€C0S¢P (20)
g, = ecos(yp w/3)
(21)

Substituting Eq. (9), (10), (18), (19), (20) and (21) in
Eq. (14), the resulting equation becomes:

d_c= sin ¢+\/§cos_¢ q 22)
c (cosd)/n) V3sin ¢

Integrating it from c to r, would result:

3n%+n Jan( n)
Sil’]( n ¢c) 3+ e 3n%+1 (0 0c)

> sinfo, 4)

(23)
where ¢, =sin 1(\/§pj/2csy) (24)
and ¢, =sin l(1/ Van? +1j (25)
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Eqg. (23) is the expression of equivalent stress ¢ in terms
of auxiliary variable angle g. From this equation the
functional relationship between g and r can be found
consequently. Substituting Eq. (18), (19) and (23) into
Eq. (9) would result:

dr 2nsin ¢d¢ 2cosddd
— == . (26)
J3nsin ¢ cos¢ sing+ \/§cos¢
Integrating this Eq. (26) from a to r would result:
L I L
sin(¢ ¢n) 34l 2 3y (6 6a)
- €
sinfo, ¢,)
(27)

As the value of auxiliary variable g at r = g, is the root
of the following equation, resulting from, substituting

Eq. (19) and (23) into Eq. (15);

) Snt+n Van(1 n)
po_2 sl o) i gy 0

- e sin
o, 3 sin(o, ¢,) b

(28)

Eq. (28) gives the relationship between g, and g..

To determine @, and g, separately, another equation
consisting of g, and g, is required, which is found by
using the boundary conditions at the elastic-plastic
interface r = c are:

Ge|r=c =p j{(bz +c? )/ (b2 ¢’ )} (29)
csr|r=C =-P; (30)

Substituting Eq. (29), (30) and (13) in Eq. (17),

P =Gy(b2 cz)/m

(1)

Inserting Eg. (19) into Eq. (16), results:

=sin ! (\/—/2)(b2 ¢2)/ab* +c*
(32)
where cis determined from Eq. (27) as:

2n V3 on?1

n) WPl 2 3ty
e

(6c 0.)
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Substituting Eq. (33) into Eg. (32), the second
functional relationship between g, and g, is obtained.
Eqg. (28), (32) and (33) can be solved by using iterative

procedures.

On determination of g, , the functional relationship
between r and g will solely be determined from Eq.(28).
Using this Eq.(28) with Eq. (18) and (19), the stresses o,
and oy at any position (r,0) in the plastic region (@ <r <
c) will be readily obtained.

Again, by using the expression of the plastic stress
components, the expressions of strains in the plastic
region (a<r < c) can be determined as follows: from
Eq. (20) and (21);

€9 (Gr 06/2)=8r(66 Gr/z) (34)
and substituting Eq. (18) and (19) into this Eq. (34), it
results:

&= {cos(¢
(35)

and substituting this Eq. (35) into the compatibility Eq.
(14), result obtained is:

iﬂ = {\/5 cos(p /6)/cos ¢}% (36)
(¢]

m/ 3)/ Cos ‘1)}59

Substituting Eq. (26) into Eq. (36) and integrating the
resulting from g to g, the expression of strains will

finally be found:

i e B ), )
=8j Sln( c ¢n) 3n*+1 w e 3n2+1 ¢ (37)
P sy 0) cos o,

e = foosl /3)/cos o)k
(38)

€, = (8r+89) (39)
wheree} = (cy/ZE){(sz +¢2)/\fap* + ¢t } (40)

and according to the value of c obtained from Eq.
(32).The displacement in the plastic region is obtained
as:
S+l NE

U=re =r8j Sin(c ¢n) an’+1 ﬂ 3n( +1)(¢ ¢C)

oo sini¢ ¢n) oS0,
(41)
Eq. (18), (19), (37) through (41) represent the general
solution in the plastic region of the open-ended thick
cylinder. Once p; and c are determined from Eq. (31)
and (33), respectively, the stress, strain, and
displacement at any position(r, 0) is the plastic range (a
< r < ¢) will readily be obtained by using these
equations. Similarly, by substituting the values of p; and
¢ into Eq.(1) through (6), the results for the stress,
strain, and displacement at any point (r, 6 ) in the elastic
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region (¢ < r < b) of the open-ended thick cylinder can
also be obtained.

3. VALIDATION

3.1 Compatibility with solution for stresses of
an elastic-perfectly plastic-material open-ended
thick cylinder

When n=0, Eq. (8) becomes an elastic-perfectly plastic
stress-strain relation of material, and Eq. (23) results:

7=09y (42)
and Eq.(27) results:
r=a/cos(9p, /6)/coslo ellbaae ol (43

where ®a =Sin 1(‘Epi/2°y) (44)
With Eq. (42) through (44) and Eq. (18), (19), the
stresses in the plastic region (a <r < ¢) for an elastic-
perfectly plastic-open-ended thick cylinder will be:

Gy = (2/\/§)csy cos(¢+n/6)

(45)

and c, = (2/\/§)cy s ¢
(46)

and the stresses in the elastic region (c <r <b) of this
subject, with Eq. (1), (2) and (31), will be:

o = cs),cz/\/3b4+c4 (1+02/r2) (47)
ando, = csycz/\/3b4+c4 (1 bz/rz) (48)

where c is obtained from Eq.(43) with Eq.(32):
c=afooslp, w/6)jcosfp, /ol o] (49)
where ¢, =tan 1{\/§(b2 ¢2)/(ab? +c2)} (50)

The numerical results of expression in Eq. (43), (45)
through (49) for stresses are exactly same as those in
[6]. So the general solution in this paper is compatible
with that in [6].

3.2 Compatibility with solution for strains of an
elastic-perfectly plastic-material open-ended
thick cylinder

Substituting n = 0, in Eq. (25) and from Eq. (37),
(38) and (39), the strains in the plastic region for an
open-ended thick cylinder of elastic-perfectly plastic
material will be:

e =0, /26 a2 + c2) ot ol ] (51)
g = {cos(¢p m/3)/cosdle,

(52)

e, = (e +5) (83)
where ¢ and g, are defined in Eq. (49) and (50). The
numerical results of these expressions are exactly same
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with those in [6]. This fact reveals that the general
solution in this paper is compatible with that in [6].

3.3 The elastic-limit pressure, Py

When ¢ = a i.e. the inner surface of the cylinder starts
yielding, at an internal pressure which is called the
elastic limit pressure, Py.

For c = a, g, = @, and from Eq. (31) one get:
p, /o, =(K? 1)/Vak*+1 (54)

where K, the radius ratio = b/a and Eq. (54) is the
elastic-limit pressure formula of the cylinder from the
general solution and is identical with the solution of
Lame based on VVon Mises yield criterion at r =a [7].

3.4 The plastic-limit (full-yield) pressure, py
When ¢ = b i.e. the outer surface of the cylinder has
yielded, at an internal pressure which is called the
plastic limit or full-yield pressure, py.

Substituting ¢ = b into Eq. (28), it would result:

' 3n2+n S n)¢
2 S 4y e g 0a (55)

PEBY s, 0

where g, is the root of the following Eq.(56):

4n 1 n?

3 T sin ¢ w3 i

*KZ - had n n°+1 56
) cos 0, 6 m e (56)
Eq. (55) is the formula for the plastic-limit pressure
given by the general solution of this subject. When
n =0 i.e. for an open-ended cylinder of elastic-perfectly
plastic-material, Eq.(55) reduces to:

pul,, = (2/\B)y sin g, 57)
where g, is the root of the following Eq.(58):
(Va/2)? =coslo, m/6eb*:) (58)

where K, the radius ratio = b/a. Eq. (57) is the plastic-
limit or full-yield-pressure formula for an open-ended
thick cylinder of elastic-perfectly plastic-material and
the numerical results are exactly same as those in [6].

07

n=8/9 i

0.65 b/a=1.5

1 105 11 118 12 125 13 135 14 145 15
c/a



Fig 2. Distribution of p;, o, for different values
of c/aand n for b/a=1.5
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Fig 3. Distribution of p;, o, for different values
of ¢ /aand n for b/a=2.0
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Fig 4. Distribution of u/a for r /a for b/a =1.5
(some specific cases)
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Fig 5. Distribution of u/a for r /a for b/a =2.0
(some specific cases)

4. CONCLUSIONS

Eq. (57), a specific case, reflects the influences of o,
and K, while, in addition to these, Eq. (55) has effect of
n (strain-hardening index), on the limiting load-carrying
capacity. The comparisons are shown in fig.2 and 3 for
radius ratios, b/a = 1.5 and 2.0, respectively, by solving
Eqg. (28) and results follow:

(1) The strain-hardening effect (n) has a significant
role on the limiting load-carrying capacity. From fig.2
and 3, for radius ratios, b/a = 1.5 and 2.0, respectively,
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the load-carrying capacity(p,/oy) of an open-ended thick
cylinder of the elastic-perfectly plastic-material (n = 0)
can be used for an cylinder of a strain-hardened
material with a smaller n (say n = 1/9), while for a
strain-hardened open-ended thick cylinder with a larger
n (say = 8/9, 2/3,..), the strain-hardening effect(n) will
be considered to yield a reasonable strength design
based on the plastic-limit pressure.

(2) The elastic-limit load-carrying capacity (py) is
much smaller than that of the plastic-limit (p,), even for
an open-ended thick cylinder of elastic-perfectly plastic-
material (n = 0), and as well as for a strain-hardened
open-ended thick cylinder with a larger n, for the radius
ratios b/a = 1.5 and 2, respectively. Hence, the design
based on the elastic-limit analysis underestimates the
load-carrying capacity of the strain-hardened open-
ended thick cylinder, which results in loss of material.

(3) The load-carrying capacities (pi/cy) of the open-
ended thick cylinders of different strain-hardening
effects (n) are reasonably different under the same
overstrain [say, 50% (c/a = 1.25 for b/a = 1.5 and
c/a = 1.5 for b/a = 2)]. The larger the n is, the larger the
load- carrying capacity (pi/oy) is.

(4) The distributions of radial displacement (u) are
shown in fig.4 and 5, for b/a = 1.5 and 2.0, respectively
assuming a strain-hardened material of o, = 1070 MPa
and E = 207000 MPa and based on p, = 332.45 MPa, p;
= 440.2MPa for n = 0 and 467.8 MPa for n = 1/2 at c/a
= 1.25, and p, = 470.16 MPa for n = 0 and 559.72 MPa
for n = 1/2, for b/a = 1.5; similarly p, = 458.57 MPa, p;
= 751.36MPa for n = 0 and 865.1 MPa for n = 1/2 at c/a
= 1.5, and p, = 823.66 MPa for n = 0 and 1070.64 MPa
for n = 1/2,for b/a = 2.0. Radial displacement u
increases as strain-hardening index n decreases and
gradually decreases from inside surface to outside
surface of the cylinder.
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6. NOMENCLATURE

Symbol | Meaning | Unit
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A Strength coefficient ---
a Inside radius m
b Outside radius m
c Elastic-plastic juncture m
E radius MPa
e Young’s modulus =
K Exponential term
n Radius ratio (= b/a)
P, P, Strain-hardening index MPa
! Internal pressure, Elastic-
Py, Py plastic juncture pressure MPa
Elastic-limit pressure,
Plastic-limit (full yield)
r pressure m
u Variable radius m
X, y Radial displacement m
0 Cartesian co-ordinate rad
Tangential co-ordinate
Equivalent, Yield stress MPa
0,0,
£, & Equivalent, Yield strain -
y . . .
Tangential, radial, axial
G9:1011,0; | stress MPa
Tangential, radial, axial
Egr €y &, strain
) Tangential elastic-plastic
85 juncture strain
Auxiliary angle [¢ ()]
¢ Auxiliary angle, atr=a,r | rad
=c
2 : b Angle of strain-hardening rad
¢, index [ ()] ad
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